References

Aarts, E., Dolan, C. V., Verhage, M., & Van der Sluis, S. (2015). Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives. BMC Neuroscience, 16(1), 1–15. https://doi.org/10.1186/s12868-015-0228-5
Aczel, B., Szaszi, B., Nilsonne, G., Akker, O. R. van den, Albers, C. J., Assen, M. A. van, Bastiaansen, J. A., Benjamin, D., Boehm, U., Botvinik-Nezer, R., Bringmann, L. F., Busch, N. A., Caruyer, E., Cataldo, A. M., Cowan, N., Delios, A., Dongen, N. N. van, Donkin, C., Doorn, J. B. van, … Wagenmakers, E.-J. (2021). Consensus-based guidance for conducting and reporting multi-analyst studies. eLife, 10, e72185. https://doi.org/10.7554/eLife.72185
Artner, R., Verliefde, T., Steegen, S., Gomes, S., Traets, F., Tuerlinckx, F., & Vanpaemel, W. (2021). The reproducibility of statistical results in psychological research: An investigation using unpublished raw data. Psychological Methods, 26(5), 527–546. https://doi.org/10.1037/met0000365
Auspurg, K., & Brüderl, J. (2021). Has the Credibility of the Social Sciences Been Credibly Destroyed? Reanalyzing the Many Analysts, One Data Set Project. Socius, 7, 23780231211024421. https://doi.org/10.1177/23780231211024421
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008a). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. https://doi.org/10.1016/j.jml.2007.12.005
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008b). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. https://doi.org/10.1016/j.jml.2007.12.005
Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. J. (2004). Visual Word Recognition of Single-Syllable Words. Journal of Experimental Psychology: General, 133(2), 283–316. https://doi.org/10.1037/0096-3445.133.2.283
Balota, D. a., Yap, M. J., Cortese, M. J., Hutchison, K. a., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). The english lexicon project. Behavior Research Methods, 39(3), 445–459. https://doi.org/10.3758/BF03193014
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013a). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013b). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278.
Bastiaansen, J. A., Kunkels, Y. K., Blaauw, F. J., Boker, S. M., Ceulemans, E., Chen, M., Chow, S.-M., Jonge, P. de, Emerencia, A. C., Epskamp, S., Fisher, A. J., Hamaker, E. L., Kuppens, P., Lutz, W., Meyer, M. J., Moulder, R., Oravecz, Z., Riese, H., Rubel, J., … Bringmann, L. F. (2020). Time to get personal? The impact of researchers choices on the selection of treatment targets using the experience sampling methodology. Journal of Psychosomatic Research, 137, 110211. https://doi.org/10.1016/j.jpsychores.2020.110211
Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. arXiv Preprint arXiv:1506.04967.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Belenky, G., Wesensten, N. J., Thorne, D. R., Thomas, M. L., Sing, H. C., Redmond, D. P., Russo, M. B., & Balkin, T. J. (2003). Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. Journal of Sleep Research, 12(1), 1–12. https://doi.org/10.1046/j.1365-2869.2003.00337.x
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127–135. https://doi.org/10.1016/j.tree.2008.10.008
Bornstein, M. H., Jager, J., & Putnick, D. L. (2013). Sampling in developmental science: Situations, shortcomings, solutions, and standards. Developmental Review, 33(4), 357–370. https://doi.org/10.1016/j.dr.2013.08.003
Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J. A., Adcock, R. A., Avesani, P., Baczkowski, B. M., Bajracharya, A., Bakst, L., Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner, J., … Schonberg, T. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 582(7810), 84–88. https://doi.org/10.1038/s41586-020-2314-9
Bourdieu, P. (2004). Science of Science and Reflexivity. Polity.
Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71(356), 791–799. https://doi.org/10.2307/2286841
Breznau, N., Rinke, E. M., Wuttke, A., Nguyen, H. H. V., Adem, M., Adriaans, J., Alvarez-Benjumea, A., Andersen, H. K., Auer, D., Azevedo, F., Bahnsen, O., Balzer, D., Bauer, G., Bauer, P. C., Baumann, M., Baute, S., Benoit, V., Bernauer, J., Berning, C., … Żółtak, T. (2022). Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty. Proceedings of the National Academy of Sciences, 119(44), e2203150119. https://doi.org/10.1073/pnas.2203150119
Brosowsky, N., Parshina, O., Locicero, A., & Crump, M. (n.d.). Teaching undergraduate students to read empirical articles: An evaluation and revision of the QALMRI method. https://doi.org/10.31234/osf.io/p39sc
Brysbaert, M., & New, B. (2009). Moving beyond kucera and francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for american english. Behavior Research Methods, 41(4), 977–990. https://doi.org/10.3758/BRM.41.4.977
Bürkner, P.-C., & Vuorre, M. (2019). Ordinal Regression Models in Psychology: A Tutorial. Advances in Methods and Practices in Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199
Burnham, K. P. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261–304. https://doi.org/10.1177/0049124104268644
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376.
Carp, J. (2012a). On the plurality of (methodological) worlds: Estimating the analytic flexibility of FMRI experiments. Frontiers in Neuroscience, 6, 149.
Carp, J. (2012b). The secret lives of experiments: Methods reporting in the fMRI literature. Neuroimage, 63(1), 289–300.
Chang, W. (2013). R graphics cookbook. o’Reilly Media.
Christensen, R. H. B. (2015). Ordinal package for r. Version 3.4.2. 1–22. http://www.cran.r-project.org/package=ordinal/
Christensen, R. H. B. (2022). Ordinal: Regression models for ordinal data. https://CRAN.R-project.org/package=ordinal
Clark, H. (Stanford. U. (1973). Clark_1973_LanguageAsAFixedEffectFallacy.pdf.
Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review. Journal of Abnormal and Social Psychology, 65(3), 145–153. https://doi.org/10.1037/h0045186
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioural sciences (3rd. edition). Lawrence Erlbaum Associates.
Colenbrander, D., Miles, K. P., & Ricketts, J. (2019). To See or Not to See: How Does Seeing Spellings Support Vocabulary Learning? Language, Speech, and Hearing Services in Schools, 50(4), 609–628. https://doi.org/10.1044/2019_lshss-voia-18-0135
Crüwell, S., Apthorp, D., Baker, B. J., Colling, L., Elson, M., Geiger, S. J., Lobentanzer, S., Monéger, J., Patterson, A., Schwarzkopf, D. S., Zaneva, M., & Brown, N. J. L. (n.d.). Whats in a badge? A computational reproducibility investigation of the open data badge policy in one issue of psychological science. https://doi.org/10.31234/osf.io/729qt
Davies, R. A. I., Birchenough, J. M. H., Arnell, R., Grimmond, D., & Houlson, S. (2017). Reading through the life span: Individual differences in psycholinguistic effects. Journal of Experimental Psychology: Learning Memory and Cognition, 43(8). https://doi.org/10.1037/xlm0000366
Davies, R., Barbon, A., & Cuetos, F. (2013). Lexical and semantic age-of-acquisition effects on word naming in spanish. Memory and Cognition, 41(2), 297–311.
Davies, R., Barbón, A., & Cuetos, F. (2013). Lexical and semantic age-of-acquisition effects on word naming in spanish. Memory and Cognition, 41(2), 297–311. https://doi.org/10.3758/s13421-012-0263-8
Del Giudice, M., & Gangestad, S. W. (2021). A Travelers Guide to the Multiverse: Promises, Pitfalls, and a Framework for the Evaluation of Analytic Decisions. Advances in Methods and Practices in Psychological Science, 4(1), 2515245920954925. https://doi.org/10.1177/2515245920954925
Dunlosky, J., & Lipko, A. R. (2007). Metacomprehension. Current Directions in Psychological Science, 16(4), 228–232. https://doi.org/10.1111/j.1467-8721.2007.00509.x
Dutilh, G., Annis, J., Brown, S. D., Cassey, P., Evans, N. J., Grasman, R. P. P. P., Hawkins, G. E., Heathcote, A., Holmes, W. R., Krypotos, A.-M., Kupitz, C. N., Leite, F. P., Lerche, V., Lin, Y.-S., Logan, G. D., Palmeri, T. J., Starns, J. J., Trueblood, J. S., Maanen, L. van, … Donkin, C. (2019). The Quality of Response Time Data Inference: A Blinded, Collaborative Assessment of the Validity of Cognitive Models. Psychonomic Bulletin & Review, 26(4), 1051–1069. https://doi.org/10.3758/s13423-017-1417-2
Eager, C., & Roy, J. (n.d.). Mixed effects models are sometimes terrible. https://doi.org/10.48550/arXiv.1701.04858
Federer, L. M. (2022). Long-term availability of data associated with articles in PLOS ONE. PLOS ONE, 17(8), e0272845. https://doi.org/10.1371/journal.pone.0272845
Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J., Ramirez-Manzanares, A., Reisert, M., Sakaie, K., Tensaouti, F., Yo, T., Mangin, J.-F., & Poupon, C. (2011). Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage, 56(1), 220–234. https://doi.org/10.1016/j.neuroimage.2011.01.032
Flake, J. K., & Fried, E. I. (2020). Measurement Schmeasurement: Questionable Measurement Practices and How to Avoid Them. Advances in Methods and Practices in Psychological Science, 3(4), 456–465. https://doi.org/10.1177/2515245920952393
Forster, K. I., & Forster, J. C. (2003). DMDX: A windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35, 116–124.
Franconeri, S. L., Padilla, L. M., Shah, P., Zacks, J. M., & Hullman, J. (2021). The Science of Visual Data Communication: What Works. Psychological Science in the Public Interest, 22(3), 110–161. https://doi.org/10.1177/15291006211051956
Frederickson, N., Frith, U., & Reason, R. (1997). Phonological assessment battery [PhAB]: Manual and test materials. nfer Nelson Publishing Company Ltd.
Gabelica, M., Bojčić, R., & Puljak, L. (2022). Many researchers were not compliant with their published data sharing statement: a mixed-methods study. Journal of Clinical Epidemiology, 150, 33–41. https://doi.org/10.1016/j.jclinepi.2022.05.019
Gelman, A. (2014). The Connection Between Varying Treatment Effects and the Crisis of Unreplicable Research. Journal of Management, 41(2), 632–643. https://doi.org/10.1177/0149206314525208
Gelman, a. (2015a). The connection between varying treatment effects and the crisis of unreplicable research: A bayesian perspective. Journal of Management, 41(2), 632–643. https://doi.org/10.1177/0149206314525208
Gelman, a. (2015b). The connection between varying treatment effects and the crisis of unreplicable research: A bayesian perspective. Journal of Management, 41(2), 632–643. https://doi.org/10.1177/0149206314525208
Gelman, A., & Hennig, C. (2017). Beyond subjective and objective in statistics. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(4), 967–1033.
Gelman, A., & Hill, J. (2007a). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Gelman, A., & Hill, J. (2007b). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Gelman, A., & Loken, E. (2014a). The garden of forking paths: Why multiple comparisons can be a problem, even when there is no fishing expedition or p-hacking and the research hypothesis was posited ahead of time. Psychological Bulletin, 140(5), 1272–1280.
Gelman, A., & Loken, E. (2014b). The statistical crisis in science. American Scientist, 102(6), 460–465. https://doi.org/10.1511/2014.111.460
Gelman, A., & Unwin, A. (2013). Infovis and Statistical Graphics: Different Goals, Different Looks. Journal of Computational and Graphical Statistics, 22(1), 2–28. https://doi.org/10.1080/10618600.2012.761137
Gelman, A., & Weakliem, D. (2009). Of beauty, sex and power. American Scientist, 97(4), 310–316. https://doi.org/10.1511/2009.79.310
Gilmore, R. O., Diaz, M. T., Wyble, B. A., & Yarkoni, T. (2017). Progress toward openness, transparency, and reproducibility in cognitive neuroscience. Annals of the New York Academy of Sciences, 1396, 5–18. https://doi.org/10.1111/nyas.13325
Goldstein, H. (1995). Multilevel statistical models. Edward Arnold.
Golino, H., & Gomes, C. (2014). Psychology data from the BAFACALO project: The Brazilian Intelligence Battery based on two state-of-the-art models Carrolls Model and the CHC model. Journal of Open Psychology Data, 2(1), e6. https://doi.org/10.5334/jopd.af
Goodman, S. N., Fanelli, D., & Ioannidis, J. P. A. (2016). What does research reproducibility mean? Science Translational Medicine, 8(341).
Grolemund, G., & Wickham, H. (n.d.). R for Data Science [Book]. https://www.oreilly.com/library/view/r-for-data/9781491910382/
Hardwicke, T. E., Bohn, M., MacDonald, K., Hembacher, E., Nuijten, M. B., Peloquin, B. N., deMayo, B. E., Long, B., Yoon, E. J., & Frank, M. C. (n.d.). Analytic reproducibility in articles receiving open data badges at the journal psychological science: An observational study. Royal Society Open Science, 8(1), 201494. https://doi.org/10.1098/rsos.201494
Hardwicke, T. E., Mathur, M. B., MacDonald, K., Nilsonne, G., Banks, G. C., Kidwell, M. C., Hofelich Mohr, A., Clayton, E., Yoon, E. J., Henry Tessler, M., Lenne, R. L., Altman, S., Long, B., & Frank, M. C. (2018). Data availability, reusability, and analytic reproducibility: evaluating the impact of a mandatory open data policy at the journal Cognition. Royal Society Open Science, 5(8), 180448. https://doi.org/10.1098/rsos.180448
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? The Behavioral and Brain Sciences, 33(2-3). https://doi.org/10.1017/S0140525X0999152X
Herndon, T., Ash, M., & Pollin, R. (2014). Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff. Cambridge Journal of Economics, 38(2), 257–279. https://doi.org/10.1093/cje/bet075
Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E.-J. (2014). Robust misinterpretation of confidence intervals. Psychonomic Bulletin & Review, 21(5), 1157–1164. https://doi.org/10.3758/s13423-013-0572-3
Hoffmann, S., Schönbrodt, F., Elsas, R., Wilson, R., Strasser, U., & Boulesteix, A.-L. (n.d.). The multiplicity of analysis strategies jeopardizes replicability: Lessons learned across disciplines. Royal Society Open Science, 8(4), 201925. https://doi.org/10.1098/rsos.201925
Howell, D. C. (2016). Fundamental statistics for the behavioral sciences. Cengage learning.
Ioannidis, J. P. a. (2005). Why most published research findings are false. PLoS Medicine, 2(8), 0696–0701. https://doi.org/10.1371/journal.pmed.0020124
Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446. https://doi.org/10.1016/j.jml.2007.11.007
John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling. Psychological Science, 23(5), 524–532. https://doi.org/10.1177/0956797611430953
Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology : A new and comprehensive solution to a pervasive but largely ignored problem. 103(1), 54–69. https://doi.org/10.1037/a0028347
Kidwell, M. C., Lazarević, L. B., Baranski, E., Hardwicke, T. E., Piechowski, S., Falkenberg, L. S., Kennett, C., Slowik, A., Sonnleitner, C., Hess-Holden, C., Errington, T. M., Fiedler, S., & Nosek, B. A. (2016). Badges to acknowledge open practices: A simple, low-cost, effective method for increasing transparency. PLoS Biology, 14(5), 1–15. https://doi.org/10.1371/journal.pbio.1002456
Klau, S., Hoffmann, S., Patel, C. J., Ioannidis, J. P., & Boulesteix, A.-L. (2021). Examining the robustness of observational associations to model, measurement and sampling uncertainty with the vibration of effects framework. International Journal of Epidemiology, 50(1), 266–278. https://doi.org/10.1093/ije/dyaa164
Klau, S., Schönbrodt, F., Patel, C. J., Ioannidis, J., Boulesteix, A.-L., & Hoffmann, S. (n.d.). Comparing the vibration of effects due to model, data pre-processing and sampling uncertainty on a large data set in personality psychology. https://doi.org/10.31234/osf.io/c7v8b
Kosslyn, S. M., & Rosenberg, R. S. (2005). Fundamentals of psychology: The brain, the person, the world, 2nd ed. Pearson Education New Zealand.
Kreft, I., & Leeuw, J. de. (1998). Introducing multilevel modeling (D. Wright, Ed.). Sage Publications.
Kuhn, T. S. (1970). The structure of scientific revolutions ([2d ed., enl). University of Chicago Press.
Landy, J. F., Jia, M. L., Ding, I. L., Viganola, D., Tierney, W., Dreber, A., Johannesson, M., Pfeiffer, T., Ebersole, C. R., Gronau, Q. F., Ly, A., Bergh, D. van den, Marsman, M., Derks, K., Wagenmakers, E.-J., Proctor, A., Bartels, D. M., Bauman, C. W., Brady, W. J., … Uhlmann, E. L. (2020). Crowdsourcing hypothesis tests: Making transparent how design choices shape research results. Psychological Bulletin, 146(5), 451–479. https://doi.org/10.1037/bul0000220
Laurinavichyute, A., Yadav, H., & Vasishth, S. (2022). Share the code, not just the data: A case study of the reproducibility of articles published in the Journal of Memory and Language under the open data policy. Journal of Memory and Language, 125, 104332. https://doi.org/10.1016/j.jml.2022.104332
Liddell, T. M., & Kruschke, J. K. (2018). Analyzing ordinal data with metric models: What could possibly go wrong? Journal of Experimental Social Psychology, 79, 328–348. https://doi.org/10.1016/j.jesp.2018.08.009
Loo, M. van der, Laan, J. van der, R Core Team, Logan, N., Muir, C., Gruber, J., & Ripley, B. (2022). Stringdist: Approximate string matching, fuzzy text search, and string distance functions. https://CRAN.R-project.org/package=stringdist
Lorch, R. F., & Myers, J. L. (1990a). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory and Cognition, 16(1), 149–157.
Lorch, R. F., & Myers, J. L. (1990b). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 149–157. https://doi.org/10.1037/0278-7393.16.1.149
Lubega, N., Anderson, A., & Nelson, N. (n.d.). Experience of irreproducibility as a risk factor for poor mental health in biomedical science doctoral students: A survey and interview-based study. https://doi.org/10.31222/osf.io/h37kw
Maier-Hein, K. H., Neher, P. F., Houde, J.-C., Côté, M.-A., Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.-C., Lin, Y.-C., Ji, Q., Reddick, W. E., Glass, J. O., Chen, D. Q., Feng, Y., Gao, C., Wu, Y., Ma, J., He, R., Li, Q., … Descoteaux, M. (2017). The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 8(1), 1349. https://doi.org/10.1038/s41467-017-01285-x
Masterson, J., & Hayes, M. (2007). Development and data for UK versions of an author and title recognition test for adults. Journal of Research in Reading, 30, 212–219.
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing type i error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. https://doi.org/10.1016/j.jml.2017.01.001
McElreath, R. (2020). : A bayesian course with examples in r and STAN (2nd ed.). Chapman; Hall/CRC. https://doi.org/10.1201/9780429029608
Meehl, P. E. (1967). Theory-testing in psychology and physics: A methodological paradox. Philosophy of Science, 34(2), 103–115.
Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir karl, sir ronald, and the slow progress of soft psychology. 46(September 1976), 806–834.
Meteyard, L., & Davies, R. A. I. (2020a). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112. https://doi.org/10.1016/j.jml.2020.104092
Meteyard, L., & Davies, R. A. I. (2020b). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112, 104092. https://doi.org/10.1016/j.jml.2020.104092
Minocher, R., Atmaca, S., Bavero, C., McElreath, R., & Beheim, B. (n.d.). Estimating the reproducibility of social learning research published between 1955 and 2018. Royal Society Open Science, 8(9), 210450. https://doi.org/10.1098/rsos.210450
Monaghan, P., Mattock, K., Davies, R. A. I., & Smith, A. C. (2015). Gavagai is as gavagai does: Learning nouns and verbs from cross-situational statistics. Cognitive Science, 39(5), 1099–1112. https://doi.org/10.1111/cogs.12186
Mousikou, P., Sadat, J., Lucas, R., & Rastle, K. (2017). Moving beyond the monosyllable in models of skilled reading: Mega-study of disyllabic nonword reading. Journal of Memory and Language, 93, 169–192. https://doi.org/10.1016/j.jml.2016.09.003
Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D., Percie Du Sert, N., Simonsohn, U., Wagenmakers, E. J., Ware, J. J., & Ioannidis, J. P. A. (2017). A manifesto for reproducible science. Nature Human Behaviour, 1(1), 1–9. https://doi.org/10.1038/s41562-016-0021
Nosek, B. A., Beck, E. D., Campbell, L., Flake, J. K., Hardwicke, T. E., Mellor, D. T., van?t Veer, A. E., & Vazire, S. (2019). Preregistration is hard, and worthwhile. Trends in Cognitive Sciences, 23(10), 815–818.
Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. Proceedings of the National Academy of Sciences, 115(11), 2600–2606.
Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Dreber, A., Fidler, F., Hilgard, J., Kline Struhl, M., Nuijten, M. B., Rohrer, J. M., Romero, F., Scheel, A. M., Scherer, L. D., Schönbrodt, F. D., & Vazire, S. (2022). Replicability, Robustness, and Reproducibility in Psychological Science. Annual Review of Psychology, 73, 719–748. https://doi.org/10.1146/annurev-psych-020821-114157
Nosek, B. A., & Lakens, D. (2014). Registered reports: A method to increase the credibility of published results. Social Psychology, 45(3), 137–141. https://doi.org/10.1027/1864-9335/a000192
Obels, P., Lakens, D., Coles, N. A., Gottfried, J., & Green, S. A. (2020). Analysis of open data and computational reproducibility in registered reports in psychology. Advances in Methods and Practices in Psychological Science, 3(2), 229–237. https://doi.org/10.1177/2515245920918872
Parsons, S. (n.d.). Exploring reliability heterogeneity with multiverse analyses: Data processing decisions unpredictably influence measurement reliability. https://doi.org/10.31234/osf.io/y6tcz
Pashler, H., & Harris, C. (2012). Is the replicability crisis overblown? Three arguments examined. Perspectives on Psychological Science, 7(6), 531–536. https://doi.org/10.1177/1745691612463401
Pashler, H., & Wagenmakers, E. J. (2012). Editors’ introduction to the special section on replicability in psychological science: A crisis of confidence? Perspectives on Psychological Science, 7(6), 528–530. https://doi.org/10.1177/1745691612465253
Patel, C. J., Burford, B., & Ioannidis, J. P. A. (2015). Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations. Journal of Clinical Epidemiology, 68(9), 1046–1058. https://doi.org/10.1016/j.jclinepi.2015.05.029
Pinheiro, J. C., & Bates, D. M. (2000a). Mixed-effects models in s and s-plus (statistics and computing). Springer.
Pinheiro, J. C., & Bates, D. M. (2000b). Mixed-effects models in s and s-plus (statistics and computing). Springer.
Poline, J.-B., Strother, S. C., Dehaene-Lambertz, G., Egan, G. F., & Lancaster, J. L. (2006). Motivation and synthesis of the FIAC experiment: Reproducibility of fMRI results across expert analyses. Human Brain Mapping, 27(5), 351–359. https://doi.org/10.1002/hbm.20268
Preston, C. C., & Colman, A. M. (2000). Optimal number of response categories in rating scales: Reliability, validity, discriminating power, and respondent preferences. Acta Psychologica, 104(1), 1–15. https://doi.org/10.1016/S0001-6918(99)00050-5
Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to deal with "the language-as-fixed-effect fallacy": Common misconceptions and alternative solutions. Journal of Memory and Language, 41(3), 416–426. https://doi.org/10.1006/jmla.1999.2650
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (Vol. 1). sage.
Ricketts, J., Dawson, N., & Davies, R. (2021). The hidden depths of new word knowledge: Using graded measures of orthographic and semantic learning to measure vocabulary acquisition. Learning and Instruction, 74, 101468. https://doi.org/10.1016/j.learninstruc.2021.101468
Roche, D. G., Kruuk, L. E. B., Lanfear, R., & Binning, S. A. (2015). Public data archiving in ecology and evolution: How well are we doing? PLoS Biology, 13(11), 1–12. https://doi.org/10.1371/journal.pbio.1002295
Rodríguez-Ferreiro, J., Aguilera, M., & Davies, R. (2020a). Positive schizotypy increases the acceptance of unpresented materials in false memory tasks in non-clinical individuals. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.00262
Rodríguez-Ferreiro, J., Aguilera, M., & Davies, R. (2020b). Semantic priming and schizotypal personality: reassessing the link between thought disorder and enhanced spreading of semantic activation. PeerJ, 8, e9511. https://doi.org/10.7717/peerj.9511
Salganik, M. J., Lundberg, I., Kindel, A. T., Ahearn, C. E., Al-Ghoneim, K., Almaatouq, A., Altschul, D. M., Brand, J. E., Carnegie, N. B., Compton, R. J., Datta, D., Davidson, T., Filippova, A., Gilroy, C., Goode, B. J., Jahani, E., Kashyap, R., Kirchner, A., McKay, S., … McLanahan, S. (2020). Measuring the predictability of life outcomes with a scientific mass collaboration. Proceedings of the National Academy of Sciences, 117(15), 8398–8403. https://doi.org/10.1073/pnas.1915006117
Scheel, A. M. (2022). Why most psychological research findings are not even wrong. Infant and Child Development, 31(1), e2295. https://doi.org/10.1002/icd.2295
Scheel, A. M., Tiokhin, L., Isager, P. M., & Lakens, D. (2021). Why Hypothesis Testers Should Spend Less Time Testing Hypotheses. Perspectives on Psychological Science, 16(4), 744–755. https://doi.org/10.1177/1745691620966795
Schweinsberg, M., Feldman, M., Staub, N., Akker, O. R. van den, Aert, R. C. M. van, Assen, M. A. L. M. van, Liu, Y., Althoff, T., Heer, J., Kale, A., Mohamed, Z., Amireh, H., Venkatesh Prasad, V., Bernstein, A., Robinson, E., Snellman, K., Amy Sommer, S., Otner, S. M. G., Robinson, D., … Luis Uhlmann, E. (2021). Same data, different conclusions: Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis. Organizational Behavior and Human Decision Processes, 165, 228–249. https://doi.org/10.1016/j.obhdp.2021.02.003
Sedlmeier, P., & Gigerenzer, G. (1989). Statistical power studies. Psychological Bulletin, 105(2), 309–316.
Shipley, W. C., Gruber, C. P., Martin, T. A., & Klein, A. M. (2009). Shipley-2 manual western psychological services. Western Psychological Services, 65.
Silberzahn, R., & Uhlmann, E. L. (2015). Crowdsourced research: Many hands make tight work. Nature, 526(7572), 189–191. https://doi.org/10.1038/526189a
Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust, F., Awtrey, E., Bahník, Š., Bai, F., Bannard, C., Bonnier, E., Carlsson, R., Cheung, F., Christensen, G., Clay, R., Craig, M., Dalla Rosa, A., Dam, L., Evans, M., Flores Cervantes, I., … Nosek, B. (2017). Many analysts, one dataset: Making transparent how variations in analytical choices affect results. Advances in Methods and Practices in Psychological Science. https://doi.org/10.31234/osf.io/qkwst
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011a). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011b). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632
Snijders, T. A. B., & Bosker, R. J. (2004). Multilevel analysis: An introduction to basic and advanced multilevel modeling. Sage Publications Ltd.
Stainthorp, R. (1997). A childrens author recognition test: A useful tool in reading research. Journal of Research in Reading, 20(2), 148158.
Starns, J. J., Cataldo, A. M., Rotello, C. M., Annis, J., Aschenbrenner, A., Bröder, A., Cox, G., Criss, A., Curl, R. A., Dobbins, I. G., Dunn, J., Enam, T., Evans, N. J., Farrell, S., Fraundorf, S. H., Gronlund, S. D., Heathcote, A., Heck, D. W., Hicks, J. L., … Wilson, J. (2019). Assessing Theoretical Conclusions With Blinded Inference to Investigate a Potential Inference Crisis. Advances in Methods and Practices in Psychological Science, 2(4), 335–349. https://doi.org/10.1177/2515245919869583
Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016a). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702–712.
Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016b). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702–712.
Tedersoo, L., Küngas, R., Oras, E., Köster, K., Eenmaa, H., Leijen, Ä., Pedaste, M., Raju, M., Astapova, A., Lukner, H., Kogermann, K., & Sepp, T. (2021). Data sharing practices and data availability upon request differ across scientific disciplines. Scientific Data, 8(1), 192. https://doi.org/10.1038/s41597-021-00981-0
Torgesen, J. K., Rashotte, C. A., & Wagner, R. K. (1999). TOWRE: Test of word reading efficiency. Pro-ed Austin, TX.
Towse, J. N., Ellis, D. A., & Towse, A. S. (2021). Opening Pandora’s Box: Peeking inside Psychology’s data sharing practices, and seven recommendations for change. Behavior Research Methods, 53(4), 1455–1468. https://doi.org/10.3758/s13428-020-01486-1
Ulrich, R., & Miller, J. (1994). Effects of truncation on reaction time analysis. Journal of Experimental Psychology: General, 123, 34–80.
Vankov, I., Bowers, J., & Munafò, M. R. (2014). On the persistence of low power in psychological science. Quarterly Journal of Experimental Psychology, 67(5), 1037–1040. https://doi.org/10.1080/17470218.2014.885986
Vasishth, S., & Gelman, A. (2021). How to embrace variation and accept uncertainty in linguistic and psycholinguistic data analysis. Linguistics, 59(5), 1311–1342. https://doi.org/10.1515/ling-2019-0051
Vazire, S. (2018). Implications of the Credibility Revolution for Productivity, Creativity, and Progress. Perspectives on Psychological Science, 13(4), 411–417. https://doi.org/10.1177/1745691617751884
Wagenmakers, E.-J., Sarafoglou, A., & Aczel, B. (2022). One statistical analysis must not rule them all. Nature, 605(7910), 423–425. https://doi.org/10.1038/d41586-022-01332-8
Wagenmakers, E.-J., Wetzels, R., Borsboom, D., & Maas, H. L. J. van der. (2011). Why psychologists must change the way they analyze their data: The case of psi: Comment on bem (2011). Journal of Personality and Social Psychology, 100(3), 426–432. https://doi.org/10.1037/a0022790
Wessel, I., Albers, C., Zandstra, A. R. E., & Heininga, V. E. (2020). A multiverse analysis of early attempts to replicate memory suppression with the think/no-think task.
Wicherts, J. M., Borsboom, D., Kats, J., & Molenaar, D. (2006). The poor availability of psychological research data for reanalysis. American Psychologist, 61(7), 726–728. https://doi.org/10.1037/0003-066X.61.7.726
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H. (2017). Tidyverse: Easily install and load the ’tidyverse’. https://cran.r-project.org/package=tidyverse
Wickham, H., & Grolemund, G. (2016). R for data science: Import, tidy, transform, visualize, and model data. " O’Reilly Media, Inc.".
Wild, H., Kyröläinen, A.-J., & Kuperman, V. (2022). How representative are student convenience samples? A study of literacy and numeracy skills in 32 countries. PLOS ONE, 17(7), e0271191. https://doi.org/10.1371/journal.pone.0271191
Wilke, C. O. (n.d.). Fundamentals of data visualization. https://clauswilke.com/dataviz/
Wilkinson, L. (2013). The Grammar of Graphics. Springer Science & Business Media.
Yarkoni, T. (2022). The generalizability crisis. Behavioral and Brain Sciences, 45, e1. https://doi.org/10.1017/S0140525X20001685
Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond coltheart’s n: A new measure of orthographic similarity. Psychonomic Bulletin & Review, 15(5), 971–979. https://doi.org/10.3758/PBR.15.5.971
Young, C. (2018). Model uncertainty and the crisis in science. Socius, 4, 2378023117737206.
Young, C., & Holsteen, K. (2017). Model Uncertainty and Robustness: A Computational Framework for Multimodel Analysis. Sociological Methods & Research, 46(1), 3–40. https://doi.org/10.1177/0049124115610347